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S U M M A R Y  
The image system for the fundamental singularities of viscous (including potential) flow are obtained in the vicinity of 
an infinite stationary no-slip plane boundary. The image system for a: stokeslet, the fundamental singularity of Stokes 
flow; rotlet (also called a stresslet), the fundamental singularity of rotational motion; a source, the fundamental 
singularity of potential flow and also the image system for a source-doublet are discussed in terms of illustrative 
diagrams. Their far-fields are. obtained and interpreted in terms of singularities. Both the stokeslet and rotlet have 
similar far field characteristics: for force or rotational components parallel to the wall a far-field of a stresslet type 
0 (r -2) is obtained, whereas normal components are of higher order O (r-3). 

1. Introduction 

Many problems in differing branches of theoretical physics are resolved by the distribution of 
singularities on, along or over some body or shape being investigated. There are many powerful 
techniques in fluid mechanics using a distribution of singularities especially in potential and 
slender body theory. Often these problems need to be resolved in the vicinity of a plane bound- 
ary, which requires us to obtain an image system in either a closed or integral form. In problems 
at very small Reynolds number it seems that very few studies have been made on viscous fluid 
singularities, especially in the vicinity of walls. Notable work in this field has been carried out 
by Lorentz [8] and Oseen [9]. For a general review of this subject from the chemical engineering 
context the book of Happel and Brenner [5] can be consulted. 

The four singularities we will consider in this paper are (i) stokeslet, (ii) rotlet, (iii) source and 
(iv) source-doublet. The study was initially instigated to find the influence a wall has on two 
purely viscous singularities, the stokeslet and rotlet, which correspond to the fundamental 
singularities of translational and rotational motion respectively. 

The fundamental singularity of translational motion at zero Reynolds number, the stokeslet, 
has been studied in some detail, while the image system in a plane stationary boundary, and 
resulting far-field has recently been discussed by Blake [2]. In this paper we will briefly re- 
capitulate his results in order to form some resemblance of completeness. 

However, on the other hand, the rotlet (the fundamental singularity of rotational motion) 
has rarely been discussed, except the general solution in spherical harmonics for rotational 
motion that can be found in Lamb [6]. Landau and Lifschitz [7] briefly discuss the rotlet 
(although it is not called by this name) in their book. Batchelor [1] obtains and discusses the 
rotlet singularity (he calls it a stresslet) in some detail when he considers the bulk stress of a 
suspension of force free particles. Discussion of the rotlet singularity has recently been given 
a new impetus by Chwang and Wu [4] when they discussed the propulsive mechanisms of 
flagellated micro-organisms exhibiting helical beating patterns. They correctly realized that it 
was essential to balance the angular momentum when discussing their propulsive mechanisms. 
Surprisingly, the angular momentum had not been included in nearly all previous studies. The 
obvious solution to this problem was to supplement the distribution of stokeslet singularities 
by rotlet singularities along the centre-line of the flagellum. 

The need for a knowledge of the singularities in the presence of a wall is required to account 
for the interactions which both flagella and cilia have with the wall. Observations of many 
flagella show that they exhibit a planar beat, and studies are needed to show whether in fact 
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this is an artifact of their motion induced by the presence of a wall (in the form of a slide or 
coverslip). 

The other two singularities in the source and its doublet are included mainly for interest sake. 
It should be pointed out though that the ease with which we can find other singularities (by 
differentiating) in an infinite viscous fluid does not hold when a boundary is present. This is 
amply illustrated by considering these two simple singularities. 

In section 2, we discuss the singularities and their image systems, illustrating the mathematical 
representation by diagrams. In section 3, the results are summarized and applications to real 
problems are discussed. 

2. Singularities and image system 

The velocity and pressure fields to be discussed in this paper will satisfy the Stokes flow equa- 
tions of motion, defined as follows in Cartesian coordinates: 

Vp = #VZu,  g ' u = 0 ,  (1) 

where p is the pressure, u the velocity vector and # the dynamic viscosity. 
Before proceeding with a discussion of the image systems for these singularities, we will 

briefly define them, as they occur in an infinite viscous fluid. In a cartesian coordinate scheme 
we suppose the singularity is at x = y. We now define the translated coordinates r =  x - y .  

The velocity and pressure field due to a force F (i.e. a stokeslet) is defined as follows: 

F_~y (b , j  r, r i )  Fj rj 
ui = 8re#\ r + ~ - / '  p - 4~z r 3 "  (2) 

TO obtain higher order singularities, corresponding to stokes doublets and quadrupoles, we 
simply take the gradient of (2) in the chosen direction. Thus from Batchelor [1], Blake [2] we 
obtain the following for the velocity and pressure field for a stokes doublet 

u i = ~  r 3 + - ~ - - ) +  r 3 , 
(3) Oj (3rjr  

p = - - ~ \  r 5 r3J " 

The strength of this type of singularity is characterized by a second order tensor Djk. The sym- 
metric term of (3) is called by Batchelor [1], a stresslet, the velocity field corresponding to 
straining motion. The antisymmetric term in (3) is termed by Batchelor, a couplet, the velocity 
field corresponding to rotational motion. He also makes the observation that if we define 

0 n = enjkDJk (4) 
8re# ' 

then the velocity field due to the couplet may be represented by the rotational vector f] as 
follows, 

O x r  
u =  r3 , p=cons t .  (5) 

This corresponds to the fundamental singularity for rotational motion (see e,9. Lamb [6]). 
Unfortunately, in the literature, there appears to be two different terms in current use for this 
singularity; the other from Chwang and Wu [4] who call this singularity a "rotlet". In this paper 
we will use the term "rotlet", mainly because in the problem we are concerned with, we will be 
considering rotational motion. These two singularities of Stokes flow can be illustrated diagram- 
matically (see Figure 1), The streamlines for a stresslet are radial while those for a rotlet are 
circular. 

A source, with mass outflow M in unit time is defined as follows 
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(b) 
Figure l. (a) Illustrates the decomposition of a couple producing stokesdoublet into a stresslet (symmetric) and rotlet 
(or couplet, antisymmetric). The dashed lines represent streamlines. (b) A symmetric stokesdoublet only produces a 
stresslet. 

M ri (6) 
u i -  4re r 3 '  

and a source doublet of vector strength and direction D is defined by 

Dj (_ 5ij 3rirj~ 
u i = ~  __ r~-+ r5 /#. (7) 

The problem of finding the image system can be accomplished by using Fourier transforms 
similar to that of Blake [-2]. We will discuss each singularity separately. 

2.1. Stokeslet 

The problem of a stokeslet in the presence of a stationary plane boundary has recently been 
discussed by Blake [-3] : his results being briefly repeated here. The exact solution for a force 
singularity in the presence of a stationary plane boundary is as follows 

rirj) R~Rj) O ~hR i RiR3) } I  

= e 3 2h((~je(~c~k-- j3 3 k ) ~ k  ~ e 3 ) J  , 

where e =  1, 2; Y=(Yl, Y2, h) and r =  [-(x t _yl)2 +(x2_yz)2+(x3_h)2]~,  R =  [,(x 1 - y t )  2 + 
(x 2 -- y2) 2 + (x3 + h)2] -~. 

The tensor (5~($~k--5i3 53k) is non zero only when j =  k; its value is + 1 for j =  1 or 2, and 
- 1 for j = 3. The image system can be illustrated as follows in Figure 2 (a) and (b). 

The velocity in the far-field is 

ui= ~ L  ~(~ + 5k 3 -- ixl5 + [ x [ ~  . (9) 

Thus there is a fundamental difference in the far-fields for the force components parallel to the 
plane and those normal to it, being of O (r-2) and O(r-3) respectively. In the propulsion of 
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Figure 2. (a) Diagram illustrating image system and far-fields for a stokeslet with j =  1. (b) The image system for j = 3 ,  
the strength of the components being given in brackets. 

ciliated micro-organisms this implies that the motion of cilia parallel to the organisms surface 
is far more important in producing general fluid motion than the movements normal to its 
surface. For a further discussion of this theoretical application, the reader is referred to Blake 
[-3]. 

2.2. Rotlet (or Couplet) 

The exact solution for a rotlet, characterized by the rotational vector ~ ,  in the vicinity of a 
stationary plane boundary is 

eljk~2jrk eijk~2jRk ( 6ik 3RiRk ~ ~2jRiRkRa 
u i -  ra R3 + 2hek~3~21 \R a R5 / + 6ekj3 R5 , 

(ekj3(2jR3~ (10) 
g 3 / 

with the same definitions for r and R that were used previously. Again it is probably easiest to 
consider the components of g2 parallel and normal to the wall (see Figure 3). 

For the components of the rotation vector ~ parallel to the wall the image system consists 
of an opposite rotlet, a stresslet of strength (16zr/~f2t) and a source doublet of strength (8 rch~21). 
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Figure 3. (a) The image system and far-fields for a rotlet with components tangential to, and (b) normal to the wall. 

The image system for components of the rotation vector 12 normal to the wall consists solely 
of an opposite image rotlet. 

The far-fields for a rotlet, like that of a stokeslet, are extremely interesting to study. The 
displacement of two opposite rotlets produce a rotational doublet (or a rotlet doublet) which 
has a velocity field of O (r- 3). However, the stresslet is of O (r- 2) and is the dominating feature 
in the far-field for the components of ~2 parallel to the wall. This is perhaps a curious result as 
we have pure rotational motion near the plane producing a characteristic straining motion in 
the far-field, which has radial streamlines; the exact opposite to that which occurs in an 
infinite domain. The velocity far-fields is as follows 

6/3k33 ~jXiXkX3 6heik3 XkX3 ~"~3 (11) 
u~ = ix15 + ixl5 

This, of course, has many similarities to the far-fields due to a stokeslet. In both cases the 
force and rotation components parallel to the axis produce stresslet far-fields which fall off 
as O (r-2) whereas those normal to the wall fall off as O (r-3). However, the important feature 
to note is that a stokeslet field is O(r-1) which placed in the presence of a wall is reduced to 
O(r -2) or O(r -3) in the far-field, whereas a rotlet is O(r -2) initially, the presence of the wall 
only changes the characteristics of the far-field, but not changing the order of magnitude of 
fall-off except for the case of the normal component. This may have some fascinating re- 
percussions in the movements of micro-organisms near walls, especially for ciliated bodies. 
Biologists have noted an apparent twisting of a cilium during its beating cycle which may 
contribute to its propulsive thrust if it is an active movement, or alternatively it could be due to 
its passive response to stress exerted on it by the fluid. 
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2,3. Source 

The exact solution for a source in the vicinity of a stationary plane boundary  is as follows 

M I r i  Ri (Ri 3RiRaR3 "] (6i3 3RiRa)] 
ui= ~ ~ + ~ g -  2 ~5 ~ ) + 2h \ R 3 R5 , 

(12) 
# M  (3Ra 2 1 ) 

p =-7- t -k-  �9 

Thus the image system for a source consists of an equal source at the image point, the same 
as in potential flow (which one would expect on mass conservation grounds anyway), a stresslet 
of strength - 4#M and a source-doublet of strength 2Mh. This is illustrated schematically in 
Figure 4. The far-field behaves as 

3M xix~ 
ui 2n Ix[ 5 " (13) 

Perhaps it is easier to compare the components  of the far-field to that of an isolated source if 
we consider the velocity field in terms of spherical polar coordinates, in which case 

M 
: source, infinite fluid 

u ~ -  4~zr 2 

M 
�9 source, image in wall: potential flow (14) ur = 2nr2 

3 M  c o s  2 0 
�9 source, no-slip wall 

u r = 2rcr 2 

where 0 measures the angle between the vertical and x. Thus the mass flow is concentrated in a 
conical region about  0 = 0. In fact, in the vertical direction the mass outflow is six times that 
for a source in an infinite fluid and three times that of potential flow which only requires zero 
normal velocities on the plane. 

, , , , t i  
--,-- �9 - -  SOURCE M__M__ 

4Tr 

IMAGE SYSTEM: 
\ t /  1 
/ i  x i 

SOURCE M STRESSLET 
4 ~  

- - 4 ~ M  

Figure 4. Image system for a source in a no-slip wall. 

+ 

SOURCE- 
DOUBLET 

2hM 

2.4. Source-doublet 

A source-doublet is included in this discussion for two main reasons: One is that when con- 
sidering a closed surface the source-doublet singularity will be found in preference to the source 
type singularity and secondly we discuss this singularity to illustrate the fact that we cannot 
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simply derive the doublet by taking the gradient of a source when in the presence of a wall. The 
solution for a source doublet in the presence of a stationary plane boundary is as follows 

F( 6iJ 3rir~) ( ~ij 3RiRj)l 6R~R3 D~cSi36R~R3 
ui= Dj 1_\ r3 1" 5 ] - \ R  3 ~g j]-- D3(~ia R5 R5 

( 3R~xa 15R2xaR~) ( 9x3R3 15x3R3) (15) 
+ 2D361~, ' R 5 + R 7 ] +  2D3c5i3 - R ~ + ~5 ] 

( 3R3 '~t~x3 15R3R~R#'~ ( 3xzRe 15R~x3R~) 
- 2D~fii;~ - R5 + -R~ / 2D~6i 3 R5 -t- R7 , 

p=4#Dk[6k3 ( 9R3+ 15R~ 15R, R2) 

The image system in this case is obviously more complex, al though it can be represented in 
terms of a finite number of known singularities. It appears  that  the higher the order of the 
singularity, the more image singularities are needed to satisfy the no-slip condition. 

3. Summary and applications 

We have found the image systems for the four singularities : stokeslet, rotlet, source and source 
doublet, in the neighborhood of a stationary no-slip plane boundary. Perhaps the most  
important  finding in this paper  is the influence of the walls on the far-fields of both the stokeslet 
and rotlet. In an infinite viscous fluid there is a power difference in the decay of vorticity for 
a stokeslet O (r -  2) and a rotlet O (r -  3), but in the presence of a stationary no-slip boundary  
the vorticity penetration of both decays as O (r-a). This may  lead to some interesting results 
for motions in the vicinity of walls. 

An important  influence of a no-slip boundary  on a source is the concentration of mass 
outflow about  the vertical coordinate. There do not seem to be any immediate applications of 
this singularity, but there may be possibilities for its use in modelling finite shaped bodies with 
a point or line distribution of other singularities, obviously including a sink distribution of 
equal strength. 

In conclusion we can add that the wall exerts an equal and opposite force, but no couple, in 
the case of a stokeslet, an equal and opposite couple with no force in the case of a rotlet while 
for all other cases both the force and couple on the wall are zero. 
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